If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35x+66=0
a = 1; b = -35; c = +66;
Δ = b2-4ac
Δ = -352-4·1·66
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-31}{2*1}=\frac{4}{2} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+31}{2*1}=\frac{66}{2} =33 $
| b/2+9=11 | | 6x+5x+12=100 | | 4x-1=2(2x+3)+5 | | 4(3x+1)=2(6x+5) | | 36=1.2+4c | | 72-5b=2b | | 2t+1+5t-6t=6+5 | | 4a+2=-1+5a | | 2(n+1)=-34 | | 1/2+3/4x=8 | | -5/x+1=-2/x+5 | | a=70^2 | | 4.8=d/8-2 | | 4n+23=5n+13 | | 8m+24=40 | | 1/3(18x+12)=-8 | | 210=5x+19 | | 1/3x+19/5x=676/45-3/2x | | .5d−12=24 | | 7x-7-4x=-19 | | 1.x²-1=50 | | x²-1=50 | | q=29=61 | | a/3+14=50 | | K+37+k+67+99=180 | | 6x(x)=9 | | 4x-2=x=12 | | X=3n+7 | | 10t–=20. | | 6+1.75x=14 | | -12x^2-7x=0 | | 5x-6=6x-61 |